53 research outputs found

    Optimal Class Size, Opt-Out Rights, and Indivisible Remedies

    Get PDF
    Prepared for a Symposium on the ALI’s Aggregate Litigation Project, this paper examines the ALI’s proposal to permit opt-out rights when remedies and “divisible,” but not to permit them when remedies are “indivisible.” Starting from the ground up, the paper employs economic analysis to determine what the optimal size of a class action should be. We demonstrate that, in some circumstances, the optimal size of a class is a class composed of all victims, while in other cases, the optimal size is smaller. We further argue that courts should consider optimal class size in determining whether to certify a class, and that there should be no opt-out right when a class is optimally sized. The ALI’s approach does not always lead to the most efficiently sized class actions

    Investigating portable fluorescent microscopy (CyScope®) as an alternative rapid diagnostic test for malaria in children and women of child-bearing age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prompt and correct diagnosis of malaria is crucial for accurate epidemiological assessment and better case management, and while the gold standard of light microscopy is often available, it requires both expertise and time. Portable fluorescent microscopy using the CyScope<sup>® </sup>offers a potentially quicker, easier and more field-applicable alternative. This article reports on the strengths, limitations of this methodology and its diagnostic performance in cross-sectional surveys on young children and women of child-bearing age.</p> <p>Methods</p> <p>552 adults (99% women of child-bearing age) and 980 children (99% ≤ 5 years of age) from rural and peri-urban regions of Ugandan were examined for malaria using light microscopy (Giemsa-stain), a lateral-flow test (Paracheck-Pf<sup>®</sup>) and the CyScope<sup>®</sup>. Results from the surveys were used to calculate diagnostic performance (sensitivity and specificity) as well as to perform a receiver operating characteristics (ROC) analyses, using light microscopy as the gold-standard.</p> <p>Results</p> <p>Fluorescent microscopy (qualitative reads) showed reduced specificity (<40%), resulting in higher community prevalence levels than those reported by light microscopy, particularly in adults (+180% in adults and +20% in children). Diagnostic sensitivity was 92.1% in adults and 86.7% in children, with an area under the ROC curve of 0.63. Importantly, optimum performance was achieved for higher parasitaemia (>400 parasites/μL blood): sensitivity of 64.2% and specificity of 86.0%. Overall, the diagnostic performance of the CyScope was found inferior to that of Paracheck-Pf<sup>®</sup>.</p> <p>Discussion</p> <p>Fluorescent microscopy using the CyScope<sup>® </sup>is certainly a field-applicable and relatively affordable solution for malaria diagnoses especially in areas where electrical supplies may be lacking. While it is unlikely to miss higher parasitaemia, its application in cross-sectional community-based studies leads to many false positives (i.e. small fluorescent bodies of presently unknown origin mistaken as malaria parasites). Without recourse to other technologies, arbitration of these false positives is presently equivocal, which could ultimately lead to over-treatment; something that should be further explored in future investigations if the CyScope<sup>® </sup>is to be more widely implemented.</p

    Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda

    Get PDF
    Background: A key component of schistosomiasis control is mass drug administration with praziquantel. While control interventions have been successful in several endemic regions, mass drug administration has been less effective in others. Here we focus on the impact of repeated praziquantel treatment on the population structure and genetic diversity of Schistosoma mansoni. Methods: We examined S. mansoni epidemiology, population genetics, and variation in praziquantel susceptibility in parasites isolated from children across three primary schools in a high endemicity region at the onset of the Ugandan National Control Programme. Children were sampled at 11 timepoints over two years, including one week and four weeks post-praziquantel treatment to evaluate short-term impacts on clearance and evidence of natural variation in susceptibility to praziquantel. Results: Prevalence of S. mansoni was 85% at baseline. A total of 3576 miracidia larval parasites, isolated from 203 individual children, were genotyped at seven loci. Overall, genetic diversity was high and there was low genetic differentiation, indicating high rates of parasite gene flow. Schistosome siblings were found both pre-treatment and four weeks post-treatment, demonstrating adult worms surviving treatment and natural praziquantel susceptibility variation in these populations at the beginning of mass drug administration. However, we did not find evidence for selection on these parasites. While genetic diversity decreased in the short-term (four weeks post-treatment), diversity did not decrease over the entire period despite four rounds of mass treatment. Furthermore, within-host genetic diversity was affected by host age, host sex, infection intensity and recent praziquantel treatment. Conclusions: Our findings suggest that praziquantel treatments have short-term impacts on these parasite populations but impacts were transient and no long-term reduction in genetic diversity was observed. High gene flow reduces the likelihood of local adaptation, so even though parasites surviving treatment were observed, these were likely to be diluted at the beginning of the Ugandan National Control Programme. Together, these results suggest that MDA in isolation may be insufficient to reduce schistosome populations in regions with high genetic diversity and gene flow

    Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species

    Get PDF
    Background: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution

    Impact of the WIC Program on the Infant Formula Market

    No full text
    Since 1972, the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) has provided free infant formula to low-income families. Today, infant formula purchases through the WIC program account for roughly half of all infant formula purchased in the United States. Beginning in the late 1980s, WIC agencies, in an effort to contain rising program costs, secured rebates from formula manufacturers through sole-source contracts for the infant formula they purchase. During 1980-2002, infant formula did not substantively change but real wholesale prices nearly doubled. This research examines the impact of providing free formula through the WIC program and its use of sole-source contracts to control program costs on the wholesale price of infant formula. The findings show that providing free formula to low-income families is the primary factor in the growth in real wholesale prices of formula and that sole-source contracts not only have reduced the cost of formula to the Government but also have retarded wholesale price growth
    • …
    corecore